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Abstract. Equivalence in spin wave theories is pointed out from the viewpoint of gauge 
invariance. Both the Holstein-Primakoff and the Dyson-Maleev representations are derived by 
imposing certain gauge fixing conditions on lhe Schwinger formalism which is gauge invariant. 
We show explicilly the equality of parlilion funclions of the Heisenberg model calculated in the 
Holstein-Primakoff and the Dyson-Maleev representations in high-temperature expansion. 

1. Introduction 

Spin wave theory is well known as a traditional method to study critical phenomena of 
quantum spin systems. Spin operators are represented in terms of bosonic creation and 
annihilation operators. In this theory, thermodynamic quantities can be calculated in a 
large spin expansion. There me several types of representations in spin wave theory, say 
Holstein-Primakoff [l], Dyson-Maleev [2,3,5] and Schwinger [4,8] representations. In the 
Holstein-Primakoff representation, spin operators are 

where boson operators b and bt satisfy [b,  b'] = 1, and s is a magnitude of spin. In this 
representation, the Hamiltonian takes a non-polynomial form because of the square root 
functions S*. In the Dyson-Maleev representation, spin operators are 

3"' = (2s - btb)b S- = bt Sz = s -b ib .  (1.2) 

One might be suspicious of unitarity of this representation, since (S-)t # S+, and then the 
Hamiltonian does not look Hermitian. This problem was discussed by Oguchi and Honma 
[6,7]. They found a non-unitary wansformation between the Holstein-Primakoff and the 
Dyson-Maleev representations. This implies that the Dyson-Maleev representation may not 
be equivalent to the Holstein-Primakoff one. 

In the Schwinger representation, two kinds of bosons are introduced. Spin operators are 

S+=aib  S-= bia S 2 - - 2 (  at, - btb) (1.3) 

where a and b denote spin up and down annihilation operators, respectively. A constraint 
with respect to the number operator 

at, + btb - 2s = 0 
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restricts the states into a spin s representation. These three representations actually look 
different from each other, even if every representation satisfies the same spin commutation 
relation. Although there have been many works on critical phenomena of quantum spin 
systems in these spin wave theories, it is still unclear whether or not obtained results depend 
on the choice of representation. The relation between different representations should be 
clarified in order to obtain universal results. 

In this paper, equivalence in spin wave theories is clarified. From the viewpoint of 
gauge invariance, it becomes obvious that the Holstein-Primakoff, the Dyson-Maleev and 
the Schwinger representations are equivalent to each other. We point out that the Schwinger 
representation is inviriant under a local U(1) gauge transformation which is generated by 
the constraint function atu+btb-Zs at each lattice site. In the well known Dirac method [9] 
for a gauge invariant theory, a gauge fixing condition is introduced to eliminate redundant 
gauge degrees of freedom. All gauge invariant quantities calculated in one gauge fixing 
condition agree with those in other gauge fixing condition, because of the gauge invariance 
of the original theory. We can choose any gauge fixing condition if it does not commute 
with the constraint function. We show that both the Holstein-Primakoff and the Dyson- 
Maleev representations are obtained from the Schwinger representation with different gauge 
fixing conditions. Thus, these representations are unitary equivalent to each other with 
respect to gaiige invariant quantities, even though a non-unitary transformation connects 
gauge dependent quantities in the Dyson-Maleev representation to those in others. We 
confirm this argument in practical calculation of the partition function which is a gauge 
invariant quantity. 

This paper is organized as follows. In section 2, we treat the Heisenberg model in the 
Schwinger representation, which possesses a local U( 1) gauge invariance. Certain gauge 
fixing conditions give us the Holstein-Primakoff and the Dyson-Maleev representations. We 
define a new inner product for unitarity of the Dyson-Maleev representation. In section 3, 
the identity of partition functions in the two representations is shown explicitly in high 
temperature expansion. 
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2. Gauge invariance and gauge fixing 

First, we discuss gauge invariance of a system which consists of only one spin operator. The 
idea will be extended to a spin system on an arbitrary lattice. Spin operators are represented 
in terms of a two component spinor operator ( z )  in the Schwinger representation, which 
is manifestly gauge invariant. Independent boson operators a and b satisfy commutation 
relations 

[a, a’] = [b, b’] = 1 (2.1) 

and otherwise vanish. The Hilbert space is spanned by eigenstates of number operators 

where 10) is defined by a10) = b10) = 0. The spin operator S is given by 
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where U is the Pauli matrix. A more explicit form is given by (1.3) which satisfies the spin 
commutation relation in terms of the bosonic commutation relation (2.1). Note that a spin 
operator is invariant under a phase transformation 

which is a U(1) gauge transformation. A theory whose Hamiltonian consists of spin 
operators is gauge invariant. The magnitude of spin is expressed in terms of a number 
operator N 

Sz = i N ( 4 N  + 1) 

where N = uta +bfb. Hence, an eigenstate of a maximal 00 commuting set S2 = S(S+ 1) 
and Sz is In,, nh) defined by (2.2) which satisfies 

Equation (2.4) indicates that, to obtain a spin s representation, we should take only those 
states which satisfy a constraint 

( N  -2s)ls) = O .  (2.6) 

The constraint operator N - 2s generates the U(1) gauge transformation 

e-io(N-2~)aeiol(N-2~) = e a  io e-iu(N-2~)&eic(N-2vs) = eiab, 

Now, we discuss elimination of this gauge degree of freedom. In the Schwinger 
representation, the redundant gauge degree of freedom still exists in the expectation value 
of a gauge invariant quantity after imposing the constraint (2.6). However, we do not 
have to take it into account if we employ normalized states, (2.2). This corresponds to 
dividing the amplitude by the gauge volume in the Fadeev-Popov procedure for a path 
integral representation. One problem within this framework is how to keep the constraint 
(2.6) when the model is extended to a lattice model. There are some methods to solve 
this problem. The Dirac method is well known as one of them [9]. In this method, we 
eliminate redundant operators from the beginning by inuoducing a gauge fixing condition. 
Since one can choose any gauge fixing function if it does not commute with the constraint, 
one has many choices of gauge fixing. Although different gauge fixing conditions give 
us different representations, the same result for the expectation value of a gauge invariant 
quantity should be obtained in any gauge fixing condition. Thus they are equivalent to 
each other. The same situation can be seen in spin wave theories. Here, we show that 
both the Holstein-Primakoff and the Dyson-Maleev representations can be regarded as 
gauge fixed theories with certain gauge fixing conditions following the Dirac method. Both 
representations can be derived from the Schwinger formalism which is gauge invariant. 

Now we deaxibe how to derive these two representations from the Schwinger 
representation. Let us consider classical coordinates ( U ,  6 ,  at, &t) in the phase space 
of the Schwinger formalism. To obtain the Holstein-Primakoff representation, we impose 
a gauge fixing condition 

at=..  (2.7) 
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Here, we regard the constraint on the spin magnitude as an equation of classical coordinates 

C lroi and M Kat0 

at, + btb-  2s = 0 .  (2.8) 

We can solve these equations with respect to a and at in terms of b and bt 

a + = a = & L X  

which enables us to eliminate redundant coordinates a and at. Note that, as well as the 
constraint, a gauge fixing condition is necessary to restrict the phase space to its sub-space 
which has even dimensions. Substituting (2.9) into (1.3), we obtain the Holstein-Primakoff 
representation ( I , ] ) .  After this elimination procedure one can quantize b and bt by replacing 
the Poisson bracket to a commutator. One can check the spin commutation relation in terms 
of boson operators, At this stage one comes across an ambiguity of operator ordering. 
According to the usual method to construct an irreducible unitary representation of spin, 
however, one obtains the unique representation. Although expressions of spin operators 
in terms of bosons are ambiguous, all representations of the spin are unitary equivalent 
as far as the spin commutation relation holds. To obtain a complete basis, one defines a 
highest-weight state by 

S+IO) = 0 

which implies b10) = 0. An eigenstate with an arbitrary eigenvalue can be obtained by 
applying the operator S- a certain number of times on the highest-weight state IO). A 
normalized eigenstate of S: with an eigenvalue m is 

(2.10) 

where m = s, s - I ,  . . , , 1 - s, -s. This representation possesses a fixed spin magnitude 
s automatically. 

To obtain the Dyson-Maleev representation, we require the following gauge fixing 
condition 

a = l .  (2.11) 

This and (2.8) lead to 

at = 2s - btb .  (2.12) 

The spin operator in the Dyson-Maleev representation (1.2) is obtained by substituting 
(2.12) into (1.3). The unitary representation of spin is determined uniquely as in the case 
of the Holstein-Primakoff representation. An eigenstate of S' with an eigenvalue m and its 
dual are 

(bt)"-"lO) (s + m ) !  
(2s)!(s - m)!  Im) = (2.13) 

(2.14) 
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where m = s, s - 1, . . . , 1 - s ,  -s. The highest-weight state 10) and its dual (01 are defined 
by b10) = 0 and (Olb' = 0. These basis are obtained by acting certain number of operators 
S+ to 10) and (01, respectively. Stls), (slS- and (-$IS' vanish automatically. The only 
non-trivial question is whether S-1 - s) vanishes or not. The answer is that it indeed 
vanishes because (mlS-1 - s) vanishes for any m (-s < m 6 s). Hence, S-1- s) should 
be identified with the zero vector. We have changed the definition of an inner product in 
such a way that (mISCln)* = (nlS-lm). On the other hand, (mlbln)* # (nlbtlm). Namely, 
unitarity is preserved in this representation for the spin, but not for the boson. Since there 
is no representation preserving unitarity for both spin and boson operators in this gauge, 
we respect the unitarity of gauge invariant operators. This implies that the Dyson-Maleev 
representation is connected to other gauge fixed theories with a unitary represented boson 
by an extended U ( l )  gauge transformation with a complex parameter. The original theory 
is invariant under this complexified U ( 1 )  gauge transformation, which is represented as 
a non-unitary transformation in the Hilbert space of boson operators. This non-unitary 
ransformation was found already by Oguchi and Honma [6,7], although the hidden gauge 
symmetry in spin wave theories has never been discussed until now. Calculations in terms 
of bosons seems to be complicated for general quantities in this representation. However, 
a trace of an arbitrary function f of the boson can be calculated in the usual basis defined 
by (2.10) 

Thus, one can calculate thermodynamic quantities in the usual basis even in this 
representation. S s a S ~ p  and SDM denote spin operators in the Schwinger, the Holstein- 
Primakoff and the Dyson-Maleev representations, respectively, whose matrix elements agree 
with each other. Thus, the following equality holds for the trace of an arbitrary function f 
of spin operator 

(2.15) 

The equivalence of these representations is obvious. 
Now, we extend our method to lattice spin models. To do so, we study the Heisenberg 

model on an d-dimensional lattice as an example. The Hamiltonian of the Heisenberg model 
is 

which is summed over each pair ( e . ~ )  of nearest neighbour sites. In the Schwinger 
representation, 'we introduce two kinds of boson operators a, and b, and impose the 
constraint on states at each lattice site 

,iZiaz + bxtbx - 2s = 0 .  

All constraints commute with each other, and each generates the U(1) gauge transformation 
at the corresponding site. Since the Hamiltonian is invariant under this local gauge 
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transformation, our method can be applied to this model as well. Our method for a 
single spin model is generalized to that for a lattice spin model straightforwardly. The 
Holstein-Primakoff or the Dyson-Maleev representations are obtained by certain gauge 
fixing conditions a; = a, and a, = 1, respectively. We can eliminate a, and a! at each 
lattice site as in the case of a single spin model. The Hamiltonian in the Holstein-Primakoff 
representation is 

C hi and M Kao 

HHP = -J  C [ s b i i 6 d m b ~  t $n2+snx - snz t ;sz] (2.16) 
1.6 

and the Dyson-Maleev representation is 

where 
X 

g(X) E 1 - - 
2s n, E bLb. 

and 6 is summed over each bond connecting a lattice site x to its nearest neighbour sites. 
Both Hamiltonians, (2.16) and (2.17). are Hermitian, even though (2.17) does not look as 
if it is. The equality of partition functions in two representations 

T ~ ~ - - B H H P  = T ~ ~ - B H D u  (2.18) 

is easily understood as in the argument of single spin case 

3. Explicit evaluation in high-temperature expansion 

As pointed out in the previous section, the Holstein-Primakoff and the Dyson-Maleev 
representations are equivalent, because of the gauge invariance of the Schwinger formalism. 
We have shown that all the matrix elements of spin operators at each lattice site are identical 
to each other in these representations. However, one can check the equality more explicitly 
starting with the Hamiltonian given by (2.16) and (2.17), even if one has no knowledge of 
the gauge invariance. In this section, we show that (2.18) holds exactly to arbitrary orders 
in high temperature expansion. 

To this end, we divide the Hamiltonian H into two parts, a boson number conserving 
and a non-conserving term: 

H = H a + H l .  

Ha in both representations is 

HO = J n, + sn, - $21 (3.1) 
X.6 

which conserves the number of bosons at each lattice site. On the other hand, the boson 
number non-conserving part is 

(3.2) 



Equivalence in spin wave theories 2921 

where vu.. in the Holstein-Primakoff representation is 

%.x - - - J s b i d m b z  

while in the Dyson-Maleev representation is 
(3.3) 

v ~ , ~  = - Js b i  g(n.) b. . (3.4) 
The partition function Z can be expressed as the trace of a density operator 

z = TI e-#(fio+H!) , 

High temperature expansion can be done around p = 0 as follows: 

Let us expand the term in the nth order 

Tr(H0 + HI)" = c Tr[Ho" HI"'*H$HI~~ . . . H~"HI"I.  (3.6) 
(I! ..... 1r.mi ..... m i )  

The sum is over each natural number partition (II,. . . , t k ,  ml, . . . , mw) of n which obeys 
I I  + . . . + + ml + . , . + mk = n and I f ,  m, 2 0. Only those terms having the same 
number of b, and b? at each lattice site can survive in (3.6). since the number of bosons 
is conserved at each lattice site in the trace. Thus, one term with a partition of n can be 
represented in bosonic random walk with m steps (m = ml + ". + mw): 

(3.7) 
Thesumisoversetofnearestneighboursitespairs{(z~,y~), ..., ( z m , , y , , , ) , . ,  ., (zmq y,,,)) 
which becomes a closed path on the d-dimensional lattice. 

Now, we show an equality of partition functions calculated in the Holstein-Primakoff 
and the Dyson-Maleev representations. It is sufficient if we show the equality for one 
arbitrary term in the right-hand side of (3.7) with one fixed set of nearest neighbour sites 
pairs. This can be done by rewriting the order of operators from the one representation to 
the other. First, we rewrite parts with respect to only one lattice site z. Using relations for 
an arbitrary function f 

(3.8) 

1 h 4 ."vum,,x,,Ho V!Jm,+,.Xm,+1 "'HO ' . 'VYm.x. 

f ( n z  - 1 P k  = b5f (nz)  f ( n x  + l)bx = bxf(n.) 

the following equation can be shown 

Tr[. . . ( m b X ) " .  . . (b5m)". . . ( m b . ) " .  . . (b:Jg(n,)". . .] 
= Tr[, . . (g(n,)b,)P' . . . (b5)y' . . . (g(n,)b,)P' , . . (b;)'', . . . 1 (3.9) 

if x;:.=, pj = qj .  We have neglected terms which commute with nx .  Equation (3.9) 
holds because can jump from one place behind b; to the other i n  front of bx without 
any change if jumps over the same number of bk and b,. This argument can apply 
to each lattice site again and again, and finally the equality is proved for one arbitrary term 
in the right-hand side of (3.7). And then, the equality between two representation is verified 
for (3.6). Thus, the partition functions in the Holstein-Primakoff and the Dyson-Maleev 
are identical with each other to arbitrary orders in high-temperature expansion. 
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4. Summary 

We have shown that several types of spin wave theories, the Holstein-Primakoff, the Dyson- 
Maleev and the Schwinger representations are equivalent to each other. We point out 
that the Schwinger formalism possesses a local U(1) gauge invariance. The Holstein- 
Primakoff and the Dyson-Maleev are obtained from the Schwinger formalism by different 
gauge fixing conditions, following the Dirac method for a gauge invariant theory. Matrix 
elements of gauge invariant operators, such as a spin operator, agree with each other in these 
three representations. In the Dyson-Maleev representation however, the boson operator bt 
is not Hermitian conjugate of b unlike the Holstein-Primakoff representation. This fact 
implies that the Dyson-Maleev representation is connected with the Holstein-Primakoff 
representation by a complexified U(1) gauge transformation. We can show the equality of 
partition functions between the Holstein-Primakoff and the Dyson-Maleev representations 
more explicitly in the Heisenberg model as an example. High-temperature expansion enables 
us to show the equality of partition function in two representations to arbitrary orders. We 
conclude that three spin wave theories the Schwinger, the Holstein-Primakoff and Dyson- 
Maleev are equivalent to each other. 
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