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Abstract. Equivalence in spin wave theories is pointed out from the viewpoint of gauge
invariance. Both the Holstein—Primakoff and the Dyson-Maleev representations are derived by
imposing certain gauge fixing conditions on the Schwinger formalism which is gauge invariant.
We show explicitly the equality of partition functions of the Heisenberg model calculated in the
Holstein-Primakoff and the Dyson—Maleev representations in high-temperature expansion.

1. Introduction

Spin wave theory is well known as a traditional method to study critical phenomena of
quantum spin systems. Spin operators are represented in terms of bosonic creation and
annihilation operators. In this theory, thermodynamic quantities can be calculated in a
large spin expansion. There are several types of representations in spin wave theory, say
Holstein-Primakoff [1], Dyson—-Maleev [2, 3, 5] and Schwinger [4, 8] representations. In the
Holstein—Primakoff representation, spin operators are

S§t =25 — bbb §™ =pty2s — btp 8§t =5 —btp (1.1)

where boson operators b and b satisfy [b, bll=1,and s is a magnitude of spin. In this
representation, the Hamiitonian takes a non-polynomial form because of the square root
functions §*%. In the Dyson-Maleev representation, spin operators are

5t = (25 — by 5™ =p! §t=5—blb. (1.2)

One might be suspicious of unitarity of this representation, since (5) # §*, and then the
Hamiltonian does not look Hermitian. This problem was discussed by Oguchi and Honma
[6,7]. They found a non-unitary transformation between the Holstein—Primakoff and the
Dyson—-Maleev representations. This implies that the Dyson—Maleev representation may not
be equivalent to the Holstein—Primakoff one.

In the Schwinger representation, two kinds of bosons are introduced. Spin operators are

st=alb s =bla  §=Lala-bp) (1.3)

where ¢ and & denote spin up and down annihilation operators, respectively. A constraint
with respect to the number operator

ata+blb—25=0

1 E-mail address: itoi@phys.cst.aihon-v.ac.jp
1 E-mail address: kato@phys.cst.nihon-u.ac.jp

0305-4470/94/082915+08319.50 (© 1994 IOP Publishing Ltd 2915



2016 C hoi and M Kato

restricts the states into a spin s representation. These three representations actually look
different from each other, even if every representation satisfies the same spin commutation
relation, Although there have been many works on critical phenomena of quantum spin
systems in these spin wave theories, it is still unclear whether or not obtained results depend
on the choice of representation. The relation between different representations should be
clarified in order to obtain universal results.

In this paper, equivalence in spin wave theories is clarified. From the viewpoint of
gauge invariance, it becomes obvious that the Holstein—Primakoff, the Dyson-Maleev and
the Schwinger representations are equivalent to each other. We point out that the Schwinger
representation is inviriant under a local U/(1) gauge transformation which is generated by
the constraint function ala+b'5—2s at each lattice site. In the well known Dirac method [9)
for a gauge invariant theory, a gauge fixing condition is introduced to eliminate redundant
gauge degrees of freedom. All gauge invariant quantities calculated in one gauge fixing
condition agree with those in other gauge fixing condition, because of the gauge invariance
of the original theory. We can choose any gauge fixing condition if it does not commute
with the constraint function. We show that both the Holstein—Primakoff and the Dyson-
Maleev representations are obtained from the Schwinger representation with different gauge
fixing conditions. Thus, these representations are unitary equivalent to each other with
respect to gauge invariant guantities, even though a non-unitary transformation connects
gauge dependent quantities in the Dyson-Maleev representation to those in others. We
confirm this argument in practical calculation of the partition function which is a gauge
invariant quantity.

This paper is organized as follows. In section 2, we treat the Heisenberg model in the
Schwinger representation, which possesses a local £/(1) gauge invariance. Certain gauge
fixing conditions give us the Holstein—Primakoff and the Dyson-Maleev representations. We
define a new inner product for unitarity of the Dyson—Maleev representation. In section 3,
the identity of partition functions in the two representations is shown explicitly in high
temperature expansion.

2. Gauge invariance and gauge fixing

First, we discuss gauge invariance of a system which consists of only one spin operator. The
idea will be extended to a spin system on an arbitrary lattice. Spin operators are represented
in terms of a two component spinor operator (;) in the Schwinger representation, which
is manifestly gauge invariant. Independent boson operators ¢ and b satisfy commutation
relations

[a,a'1 =[5, b1] = 1 @.1)
and otherwise vanish. The Hilbert space is spanned by eigenstates of number operators

1 1
\/na! A p!

where |0} is defined by {0} = b|0) = 0. The spin operator S is given by

§ =L@ bhe (‘;)

(@)™ b1y (0) (2.2)

|nt£|nb} =
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where o is the Pauli matrix. A more explicit form is given by (1.3) which satisfies the spin
commutation reiation in terms of the bosonic commutation relation (2.1). Note that a spin
operator is invariant under a phase transformation

a—s é% b —s &% (2.3)

which is a U(l) gauge transformation. A theory whose Hamiltonian consists of spin
operators is gauge invariant. The magnitude of spin is expressed in terms of a number
operator N

§2=iN(IN+1)

where N = a'a 4 bh. Hence, an eigenstate of a maximal 00 commuting set 8% = S(§+1)
and §° is |ng, np} defined by (2.2) which satisfies

S|na, rp) = £ (s + np)lng, #s) 2.4)
§%|na, np) = §(na — nodlna, s} . (2.5)

Equation (2.4) indicates that, to obtain a spin s representation, we should take only those
states which satisfy a constraint

(N —25)|5) =0. (2.6)

The constraint operator N — 2s generates the {/(1) gauge transformation

e-ia(N—?_\')a eia(N—Z.\') = cicza chia(N—z'r)b eia(N—Z\‘) = eiab .

Now, we discuss elimination of this gauge degree of freedom. In the Schwinger
representation, the redundant gauge degree of freedom still exists in the expectation value
of a gauge invariant quantity after imposing the constraint (2.6). However, we do not
have to take it into account if we employ normalized states, (2.2). This corresponds to
dividing the amplitnde by the gauge volume in the Fadeev-Popov procedure for a path
integral representation. One problem within this framework is how to keep the constraint
(2.6) when the model is extended to a lattice model. There are some methods to solve
this problem. The Dirac method is well known as one of them [9]. In this method, we
eliminate redundant operators from the beginning by introducing a gauge fixing condition.
Since one can choose any gauge fixing function if it does not commute with the constraint,
one has many choices of gauge fixing. Although different gauge fixing conditions give
us different representations, the same result for the expectation value of a gauge invariant
quantity should be obtained in any gauge fixing condition. Thus they are equivalent to
each other. The same situation can be seen in spin wave theories. Here, we show that
both the Holstein—Primakoff and the Dyson—Maleev representations can be regarded as
gauge fixed theories with certain gauge fixing conditions following the Dirac method. Both
representations can be derived from the Schwinger formalism which is gavge invariant.

Now we describe how to derive these two representations from the Schwinger
representation. Let us consider classical coordinates (¢, b, a!, b!) in the phase space
of the Schwinger formalism. To obtain the Holstein-Primakoff representation, we impose
a gauge fixing condition

d =a. 2.7
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Here, we regard the constraint on the spin magnitude as an equation of classical coordinates
ala+b'b—25s=0. (2.8)

We can solve these equations with respect to @ and af in terms of b and bt

a' =a=+2s-bth (2.9)

which enables us to eliminate redundant coordinates @ and af., Note that, as weli as the
constraint, a gauge fixing condition is necessary to restrict the phase space to its sub-space
which has even dimensions. Substituting (2.9) into (1.3), we obtain the Holstein-Primakoff
representation (1.1), After this elimination procedure one can quantize b and &' by replacing
the Poisson bracket to a commutator. One can check the spin commutation relation in terms
of boson operators. At this stage one comes across an ambiguity of operator ordering.
According to the usual method to construct an irreducible unitary representation of spin,
however, one obtains the unique representation. Although expressions of spin operators
in terms of bosons are ambiguous, all representations of the spin are unitary equivalent
as far as the spin commutation relation holds. To obtain a complete basis, one defines a
highest-weight state by

S*0y =0

which implies |0} = 0. An eigenstate with an arbitrary eigenvalue can be obtained by
applying the operator 5~ a certain number of times on the highest-weight state |0). A
normalized eigenstate of §* with an eigenvalue m is

1
m) = —=—=——==(6")""10 2.10
) =~ (1) "10) @10
where m = s, 5§ —1,...,1 —5, —s. This representation possesses a fixed spin magnitude

s automaticaily.
To obtain the Dyson-Maleev representation, we require the following gauge fixing
condition
a=1. (2.11)
This and (2.8) lead to
at =25 —b'b. (2.12)
The spin operator in the Dyson—Maleev representation (1.2) is obtained by substituting

(2.12) into (1.3). The unitary representation of spin is determined uniquely as in the case
of the Holstein-Primakoff representation. An eigenstate of 5% with an eigenvalue m and its

dual are
_ (s + m)! rs—m
my = Gy =i IO 2.13)

_ (25)! v
(m| = \/(s+m)!(s mpm A (219
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wherem =5, §—1,..., 1 —s, —s. The highest-weight state |0} and its dual (0] are defined
by bj0) = 0 and {0|4' = 0. These basis are obtained by acting certain number of operators
ST to |0} and (0|, respectively. S*+is), (s[S~ and (—5|S* vanish automatically. The only
non-trivial question is whether S7| — s) vanishes or not. The answer is that it indeed
vanishes because (m[S~| — 5) vanishes for any m (—s < m < 5). Hence, §~| — s) shouid
be identified with the zero vector. We have changed the definition of an inner product in
such a way that (m|ST|m)* = (#|S~|m). On the other hand, (n|b|n)* # (n|bT)m). Namely,
unitarity is preserved in this representation for the spin, but not for the boson. Since there
is no representation preserving unitarity for both spin and boson operators in this gauge,
we respect the unitarity of gauge invariant operators. This implies that the Dyson-Maleev
representation is connected to other gauge fixed theories with a unitary represented boson
by an extended {/(1) gauge transformation with a complex parameter, The original theory
is invariant under this complexified /(1) gange transformation, which is represented as
a non-unitary transformation in the Hilbert space of boson operators. This non-unitary
transformation was found already by Oguchi and Honma {6, 7], aithough the hidden gauge
symmetry in spin wave theories has never been discussed until now. Calculations in terms
of bosons seems to be complicated for general quantities in this representation. However,
a trace of an arbitrary function f of the boson can be calculated in the usual basis defined
by (2.10)

Tefo,bhy= 3 (mlf b, bhim) = 3 (ml £ (b, b')im)

m=—s m==y

Thus, one can calculate thermodynamic quantities in the usual basis even in this
representation. SgepSup and Spm denote spin operators in the Schwinger, the Holstein—
Primakoff and the Dyson-Maleev representations, respectively, whose matrix elements agree
with each other. Thus, the following equality hoids for the trace of an arbitrary function f
of spin operator

D" {nta | F(Ssenia, b, @’ b)) |na, ns)
Ra+ap=28

5 &

= ) (mlF(Sup(v, 81)Im) = 3 {mlF (Spmlb, b )lm) . 2.15)

m== Mm=—y

The equivalence of these representations is obvious.
Now, we extend our method to lattice spin models. To do so, we study the Heisenberg
model on an d-dimensional lattice as an example. The Hamiltonian of the Heisenberg model

is
H=-1) 85,
{1

which is summed over each pair {®,y) of nearest neighbour sites. In the Schwinger
representation, we introduce two kinds of boson operators a, and b and impose the
constraint on states at each lattice site

gty + be'by ~25 =0,

All constraints commute with each other, and each generates the U/{1} gauge transformation
at the corresponding site. Since the Hamiltonian is invariant under this local gauge
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transformation, our method can be applied to this model as well. Our method for a
single spin model is generalized to that for a laftice spin model straightforwardly. The
Holstein—Primakoff or the Dyson-Maleev representations are obtained by certzin gauge
fixing conditions a} = ag and a; = 1, respectively. We can eliminate a, and af, at each
lattice site as in the case of a single spin model. The Hamiltonian in the Holstein—-Primakoff
representation is

Hyp = —=J Z [-5' b;_;.g\f g(nypss)g(ne) by + %ﬂm-!-.! Ry — §hy -+ %52] (2.16)
x.6
and the Dyson-Maleev representation is

Hom=—J 3 [sbL 15 8012 bz + Sngang — sng + ;sz] @2.17)
x,§

where
X
g =1-2 ng = blbg

and 6 is summed over each bond connecting a lattice site x to its nearest neighbour sites.
Both Hamiltonians, (2.16) and (2.17), are Hermitian, even though (2.17) does not look as
if it is. The equality of partition functions in two representations

Tre AHir = TreFfiom (2.18)

is easily understood as in the argument of single spin case.

3. Explicit evaluation in high-temperature expansion

As pointed out in the previous section, the Holstein-Primakoff and the Dyson-Maleev
representations are equivalent, because of the gauge invariance of the Schwinger formalism.
We have shown that all the matrix elements of spin operators at each lattice site are identical
to each other in these representations. However, one can check the equality more explicitly
starting with the Hamiltonian given by (2.16) and (2.17), even if one has no knowledge of
the gauge invariance. In this section, we show that (2.18) holds exactly to arbitrary orders
in high temperature expansion.

To this end, we divide the Hamiltonian H into two parts, a boson number conserving
and a non-conserving term:

H=Hy+ H.
Hy in both representations is
Ho=17Y  [~4nass nz+sng — 35%] 3.1)
.8

which conserves the number of bosons at each lattice site. On the other hand, the boson
number non-conserving part is

H = Z Vzt+éz (3.2)

.4
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where vy 5 in the Holstein—Primakoff representation is

Vyo = ~Js bl\/2(ny)g(ns) by (3.3)
while in the Dyson—-Maleev representation is

Vyo = —Js b} g(nz) bz . (3.4)
The partition function Z can be expressed as the trace of a density operator

7 = Tre Flh+H)

High temperature expansion can be done around 8 = 0 as follows:

z—i(—ﬁ)"'rr(ﬂ + H) (3.5)
= n=n n! 0 ] . -
Let us expand the term in the nth order
Te(Ho+ Hy)'= ) THOH™HSH™ . CHfE™]. (3.6)
LT TE Y
The sum is over each natural number partition (Iy,..., [, nty, ..., my) of n which obeys

H4--F+h+m+ - +m=nand l;,m = 0 Only those terms having the same
number of bz and bL at each lattice site can survive in (3.6), since the number of bosons
is conserved at each lattice site in the trace. Thus, one term with a partition of n can be
represented in bosonic random walk with m steps (m = m; + -+« - mg):

Te[ Ho' Hy™ Hot ™ . H H™] = (=ds)" Y Tr[Hof' Vg -

[ml,....x,,.m....."‘ f

[} [/
mee V‘ym, Ty Hoivyml-t-hxmwl e Hok e vym-mm]
3.7)

The sum is over set of nearest neighbour sites pairs {{1, Y1}, .- . (oo Umy }s o+ s (@i Y}
which becomes a closed path on the d-dimensicnal lattice.

Now, we show an equality of partition functions calculated in the Holstein-Primakoff
and the Dyson-Maleev representations. It is sufficient if we show the equality for one
arbitrary term in the right-hand side of (3.7) with one fixed set of nearest neighbour sites
pairs. This can be done by rewriting the order of operators from the one representation to
the other. First, we rewrite parts with respect to only one lattice site &. Using relations for
an arbitrary function f

flng — DbL = b F(ng) flng 4 Dby = by f (1) (3.8)

the following equation can be shown
... (\/Mbm)m . (b;\/mrl " (@bm)P' . (b;,/g(nm))q' ]
= Tr[, - (gnedbe)™ . B .. (glng)ba)? .. (BLY . ] (3.9

if Zj;:, pi = Zj,:] g;. We have neglected terms which commute with #. Equation (3.9)
holds because +/g(riz) can jump from one place behind b1 to the other in front of b, without
any change if »/g(n,) jumps over the same number of &) and b;. This argument can apply
to each lattice site again and again, and finally the equality is proved for one arbitrary term
in the right-hand side of (3.7). And then, the equality between two representation is verified
for (3.6). Thus, the partition functions in the Holstein—Primakoff and the Dyson—-Maleev
are identical with each other to arbitrary orders in high-temperature expansion.
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4. Summary

We have shown that several types of spin wave theories, the Holstein-Primakoff, the Dyson~
Maleev and the Schwinger representations are equivalent to each other. We point out
that the Schwinger formalism possesses a Jocal U(1) gauge invariance. The Holstein—
Primakoff and the Dyson-Maleev are obtained from the Schwinger formalism by different
gauge fixing conditions, following the Dirac method for a gauge invariant theory. Matrix
clements of gauge invariant operators, such as a spin operator, agree with each other in these
three representations. In the Dyson-Maleev representation however, the boson operator b
is not Hermitian conjugate of & unlike the Holstein~Primakoff representation. This fact
implies that the Dyson—-Maleev representation is connected with the Holstein—Primakoff
representation by a complexified /(1) gauge transformation. We can show the equality of
partition functions between the Holstein—Primakoff and the Dyson-Maleev representations
more explicitly in the Heisenberg model as an example. High-temperature expansion enables
us to show the equality of partition function in two representations to arbitrary orders. We
conclude that three spin wave theories the Schwinger, the Holstein-Primakoff and Dyson-
Maleev are equivalent to each other.
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